1. Welcome
  2. 1. Fundamental Machine Learning Algorithms
    1. 1.1. K-Nearest Neighbours
    2. 1.2. Linear Regression
    3. 1.3. Logistic Regression
    4. 1.4. Softmax Regression
    5. 1.5. Perceptron
    6. 1.6. Naive Bayes Classifier
    7. 1.7. Support Vector Machine
    8. 1.8. Decision Tree Classifier
    9. 1.9. Random Forest Classifier
    10. 1.10. K-Means Clustering
    11. 1.11. AdaBoost
    12. 1.12. Principal Component Analysis
    13. 1.13. Linear Discriminant Analysis
  3. 2. Neural Networks & Deep Learning
    1. 2.1. Tensor Manipulation
    2. 2.2. Autograd & Computational Graphs
    3. 2.3. Backpropagation
    4. 2.4. Gradient Descent
    5. 2.5. Training Loop
    6. 2.6. Linear Regression Revisited
    7. 2.7. Logistic Regression Revisited
    8. 2.8. Softmax & Cross-Entropy Loss Revisited
    9. 2.9. Activation Functions
    10. 2.10. DataLoaders & Transforms
    11. 2.11. Neural Networks
    12. 2.12. Convolutional Neural Networks
    13. 2.13. Transfer Learning
    14. 2.14. Transformers & Paper Replicating
  4. 3. Data Handling & Model Deployment
    1. 3.1. Handling Data
    2. 3.2. Visualising Data
    3. 3.3. Tensorboard
    4. 3.4. Saving & Loading Models
    5. 3.5. Model Deployment

Data Science Training

Machine Learning Fundamentals